Habitat selection in translocated gregarious ungulate species: an interplay between sociality and ecological requirements

  • Published source details Scillitani L., Darmon G., Monaco A., Cocca G., Sturaro E., Rossi L. & Ramanzin M. (2013) Habitat selection in translocated gregarious ungulate species: an interplay between sociality and ecological requirements. The Journal of Wildlife Management, 77, 761-769


This study is summarised as evidence for the following.

Action Category

Translocate to re-establish or boost populations in native range

Action Link
Terrestrial Mammal Conservation
  1. Translocate to re-establish or boost populations in native range

    A study in 1978–2004 and a controlled study in 2006–2009 in an alpine site comprising forest, rock and scree in Italy (Scillitani et al. 2013) found that following translocations of Alpine ibex Capra ibex, the population increased and translocated ibex used similar habitats to resident ibex. Twenty-three years after translocation, the estimated number of Alpine ibex (456 individuals) was higher than the number released (10 individuals). However, two years later the population declined by 75% due to a sarcoptic mange epidemic. Following further translocations, released ibex selected the same habitat resources as used by resident ibex (data presented as an ordination analysis), but translocated ibex initially occupied larger ranges and were separated from resident animals. By one year after release the home range size of translocated and resident ibex was similar, and by three years translocated animals were integrated into the resident social group. In 1978–1979, ten Alpine ibex were translocated from the Gran Paradiso National Park to the Marmolada massif in the Alps. In 2006–2007, fourteen additional male ibex were translocated to reinforce the Marmolada massif population. All ibex translocated in 2006–2007 were radio-collared. From 2006–2009, sixty-seven resident male ibex from the established population were caught and ear-tagged and 52 were radio-collared. Translocated and established ibex were followed for 3–4 years.

    (Summarised by: Ricardo Rocha)

Output references

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, terrestrial mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 18

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.

Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust