Study

Actions

This study is summarised as evidence for the following.

Action Category

Crop production: Use no tillage in arable fields

Action Link
Mediterranean Farmland

Crop production: Use reduced tillage in arable fields

Action Link
Mediterranean Farmland

Soil: Use reduced tillage in arable fields

Action Link
Mediterranean Farmland

Soil: Use no tillage in arable fields

Action Link
Mediterranean Farmland
  1. Crop production: Use no tillage in arable fields

    A replicated, randomized, controlled study in 2002–2005 on three rainfed farms in the Ebro river valley, Spain, found lower crop yields in plots with no tillage, compared to conventional tillage. Crop yield: Lower barley yields were found in plots with no tillage, compared to conventional tillage, in four of 10 comparisons (730–3,083 vs 1,314–3,514 kg/ha). Methods: No tillage or conventional tillage was used on ten plots each (Peñaflor: three plots each, 33 x 10 m plots; Agramunt: four plots each, 9 x 50 m plots; Selvanera: three plots each, 7 x 50 m plots). In Peñaflor, a mouldboard plough (30–40 cm depth) and a cultivator (10–15 cm depth) were used for conventional tillage. In Agramunt, a mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. In Selvanera, a subsoil plough (40 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. Herbicide and a seed drill were used for no tillage.

     

  2. Crop production: Use reduced tillage in arable fields

    A replicated, randomized, controlled study in 2002–2005 on three rainfed farms in the Ebro river valley, Spain, found that tillage had inconsistent effects on crop yield. Crop yield: Lower crop yields were found in plots with reduced tillage, compared to conventional tillage, in three of 10 comparisons (barley: 2,273–3,071 vs 2,493–3,514 kg/ha; wheat: 1,830 vs 2,703), but higher yields were found in two of 10 comparisons (rapeseed: 1,783 vs 1,261 kg/ha; wheat: 911 vs 798). Methods: Reduced tillage or conventional tillage was used on ten plots each (Peñaflor: three plots each, 33 x 10 m plots; Agramunt: four plots each, 9 x 50 m plots; Selvanera: three plots each, 7 x 50 m plots). In Peñaflor, a mouldboard plough (30–40 cm depth) and a cultivator (10–15 cm depth) were used for conventional tillage. In Agramunt, a mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. In Selvanera, a subsoil plough (40 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. A cultivator (Agramunt and Selvanera: 15 cm depth) or chisel plough (Peñaflor: 25–30 cm depth) was used for reduced tillage.

     

  3. Soil: Use reduced tillage in arable fields

    A replicated, randomized, controlled study in 2002–2005 on three rainfed farms in the Ebro river valley, Spain, found similar amounts of greenhouse gas in soils with reduced tillage or conventional tillage. Greenhouse gases: Similar amounts of carbon dioxide were found in soils with reduced tillage or conventional tillage (0.11–1.65 vs 0.12–1.76 g CO2/m2/hour). Methods: Reduced tillage or conventional tillage was used on ten plots each (Peñaflor: three plots each, 33 x 10 m plots; Agramunt: four plots each, 9 x 50 m plots; Selvanera: three plots each, 7 x 50 m plots). In Peñaflor, a mouldboard plough (30–40 cm depth) and a cultivator (10–15 cm depth) were used for conventional tillage. In Agramunt, a mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. In Selvanera, a subsoil plough (40 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. A cultivator (Agramunt and Selvanera: 15 cm) or chisel plough (Peñaflor: 25–30 cm depth) was used for reduced tillage. Carbon dioxide samples were collected from December 2002 (Peñaflor, twice/month) or December 2003 (Agramunt and Selvanera, once/month) to June 2005, with an open chamber (900 mL airflow/minute, 21 cm diameter).

     

  4. Soil: Use no tillage in arable fields

    A replicated, randomized, controlled study in 2002–2005 on three rainfed farms in the Ebro river valley, Spain (same study as (5)), found less greenhouse gas in soils with no tillage, compared to conventional tillage. Greenhouse gases: Less carbon dioxide was found in soils with no tillage, compared to conventional tillage, in three of 13 comparisons (0.27–0.85 vs 0.54–1.19 g CO2/m2/hour). Methods: No tillage or conventional tillage was used on ten plots each (Peñaflor: three plots each, 33 x 10 m plots; Agramunt: four plots each, 9 x 50 m plots; Selvanera: three plots each, 7 x 50 m plots). In Peñaflor, a mouldboard plough (30–40 cm depth) and a cultivator (10–15 cm depth) were used for conventional tillage. In Agramunt, a mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. In Selvanera, a subsoil plough (40 cm depth) and a cultivator (15 cm depth) were used for conventional tillage. Herbicide and a seed drill were used for no tillage. Carbon dioxide samples were collected from December 2002 (Peñaflor, twice/month) or December 2003 (Agramunt and Selvanera, once/month) to June 2005, with an open chamber (900 mL airflow/minute, 21 cm diameter).

     

Output references
What Works in Conservation

What Works in Conservation

What Works in Conservation assesses the research looking at whether interventions are beneficial or not. It is based on summarised evidence in synopses, on topics such as amphibians, bats, biodiversity in European farmland, and control of freshwater invasive species. More are available and in progress.

More about What Works in Conservation

Download free PDF or purchase
Our Journal: Conservation Evidence

Our Journal:
Conservation Evidence

A unique, free to publish open-access journal publishing research and case studies that measure the effects of conservation actions.

Read latest volume: Volume 16

Special issues: Amphibian special issue

Go to the Journal

Subscribe to our newsletter

Please add your details if you are interested in receiving updates from the Conservation Evidence team about new papers, synopses and opportunities.

Who uses Conservation Evidence?

Meet the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust