Study

Hypoxia as a novel method for preventing movement-induced mortality during translocation of turtle eggs

  • Published source details Williamson S.A., Evans R.G., Robinson N.J. & Reina R.D. (2017) Hypoxia as a novel method for preventing movement-induced mortality during translocation of turtle eggs. Biological Conservation, 216, 86-92.

Actions

This study is summarised as evidence for the following.

Action Category

Relocate nests/eggs for artificial incubation: Sea turtles

Action Link
Reptile Conservation
  1. Relocate nests/eggs for artificial incubation: Sea turtles

    A replicated, randomized, controlled study in 2015 in laboratory conditions in Costa Rica (Williamson et al. 2017) found that olive ridley turtle Lepidochelys olivacea eggs artificially incubated in normal oxygen conditions had better hatching success, but were more vulnerable to being inverted, than eggs initially artificially incubated in low oxygen (‘hypoxic’) conditions. Hatching success of olive ridley turtle eggs initially incubated in any one of three hypoxic conditions was lower (Perspex box with nitrogen: 23 of 75 eggs; zip lock bag with nitrogen: 14 of 71 eggs; vacuum-sealed plastic bag: 34 of 79 eggs) than eggs incubated in normal oxygen conditions (53 of 78 eggs). Hatching success in hypoxic-maintained eggs was similar whether or not eggs were inverted during the incubation process, whereas when eggs were incubated in normal oxygen conditions, inverting eggs lowered hatching success (see original paper for details). For three days after collection, olive ridley eggs collected from six nesting females in October–November 2015 were either kept in normal oxygen conditions in a sand-filled incubator (78 eggs), or in one of three ‘hypoxic’ containers: a Perspex box filled with nitrogen (75 eggs), a plastic bag filled with nitrogen (71 eggs), or a vacuum-sealed bag (79 eggs; 13–24 eggs/hypoxic container, four containers/type). A subset of eggs from each treatment (normal oxygen: 10 eggs; Perspex box: 10 eggs; zip lock bag: 7 eggs; vacuum-sealed bag: 10 eggs) were inverted 180° horizontally after three days and compared to equivalent numbers of eggs/treatment that were not inverted. After experimental treatments, eggs were either buried in a hatchery or maintained in incubators and hatchlings were counted on emergence.

    (Summarised by: Katie Sainsbury)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 19

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust